SA fossils may be earliest known multicellular life - study

2017-04-26 14:59
Gallery  |  click on thumbnail to view larger image

Pics: Meet Homo naledi

The largest assemblage of fossil relatives ever discovered in the history of South Africa has been found at the Cradle of Humankind. View pics of the discovery here.

Paris - Fossils accidentally discovered in South Africa are probably the oldest fungi ever found by a margin of 1.2 billion years, rewriting the evolutionary story of these organisms which are neither flora nor fauna, researchers said on Monday.

If verified as both fungal and multicellular, the 2.4 billion-year-old microscopic creatures - whose slender filaments are bundled together like brooms - could also be the earliest known specimens of the branch of life to which humans belong, they reported in the journal Nature Ecology & Evolution.

Up to now, the first fossil trace of eukaryotes - the "superkingdom" that includes plants, animals and fungi, but not bacteria - dates to only 1.9 billion years ago.

Earth itself is about 4.6 billion years old.

The ancient fungus-like life forms, found in fossilised gas bubbles 800m underground in the Northern Cape, are remarkable not just for their age but their origin, the researchers said.

It has long been assumed that fungi first emerged on land, but the newly-found organisms lived and thrived under an ancient ocean seabed, tucked in the crevices of volcanic rock.

Nobody was looking for them, explained co-author Birger Rasmussen, a geology professor at Curtin University in Bentley, Australia who was examining lava samples from the Ongeluk Formation to determine their age.

It screamed 'life' 

"My attention was drawn to a series of petrified gas bubbles, and when I increased the magnification of the microscope, I was startled," he recalled.

The bubbles were "filled with hundreds of exquisitely preserved filaments that just screamed 'life'," he wrote by email.

The plot thickened when Rasmussen realised that the surrounding lava was not 2.2 billion years old, as previously thought, but 2.4 billion years old.

That extra 200 million years was significant because it straddles a critical threshold in Earth's geological history called the Great Oxidation Event - a rapid and massive outpouring of oxygen into the atmosphere.

The new dating meant that not only had these fungus-like creatures lived in a dark and cavernous world devoid of light, but they also lacked oxygen.

"This would have tremendous implications for the lifestyle of the early ancestors of eukaryotes and fungi," Rasmussen added.

For many years, fungi were grouped with, or mistaken, for plants. Not until 1969 were they officially granted their own "kingdom", alongside animals and plants, though their distinct characteristics had been recognised long before that.

Yeast, mildew and molds are all fungi, as are many forms of large, mushroom-looking organisms that grow in moist forest environments and absorb nutrients from dead or living organic matter.

Looking in the wrong place 

Unlike plants, fungi do not photosynthesise, and their cell walls are devoid of cellulose.

The creatures unveiled in the new study existed in what is called the deep biosphere, beneath land and sea.

"The deep biosphere - which hosts a significant part of Earth's biomass - is very poorly known, and its history even more so," said lead author Stefan Bengtson, a palaeobiologist at the Swedish Museum of Natural History.

Earlier research has turned up evidence that gas bubbles in lava below the bottom of the sea provided living space for fungi as far back as 50 million years.

"What we have now found is that such a habitat existed already more than two billion years ago - at a time when fungi were not thought to have yet existed," Bengtson told AFP.

Fungi in this environment most probably live in symbiosis with microbes, using chemically stored energy for their metabolism, added co-author Magnus Ivarsson, an expert on these hidden worlds.

"They may not even have needed free oxygen."

Scientists not involved in the study said its was potentially paradigm shifting, but must be bolstered by further research.

The discovery "challenges current thinking about when and where eukaryotes evolved", Nicola McLoughlin, a professor at Rhodes University in Grahamstown commented, also in Nature Ecology & Evolution.

It "raises the question of whether we have been looking in the wrong place for the earliest eukaryotes and fossil fungi in particular".

Read more on:    kimberley  |  australia  |  east london  |  marine life

Join the conversation!

24.com encourages commentary submitted via MyNews24. Contributions of 200 words or more will be considered for publication.

We reserve editorial discretion to decide what will be published.
Read our comments policy for guidelines on contributions.
NEXT ON NEWS24X

Inside News24

 
/News
 

8 great natural remedies for your pet

Tips and tricks to cure your pet’s itches and coughs, naturally.

 
 

Paws

Buying a puppy? Don’t get scammed!
WATCH: These funny animal videos will make you LOL!
11 animals before and after they were adopted from shelters
Competition pet grooming – creative or too extreme?
Traffic Alerts
There are new stories on the homepage. Click here to see them.
 
English
Afrikaans
isiZulu

Hello 

Create Profile

Creating your profile will enable you to submit photos and stories to get published on News24.


Please provide a username for your profile page:

This username must be unique, cannot be edited and will be used in the URL to your profile page across the entire 24.com network.

Settings

Location Settings

News24 allows you to edit the display of certain components based on a location. If you wish to personalise the page based on your preferences, please select a location for each component and click "Submit" in order for the changes to take affect.




Facebook Sign-In

Hi News addict,

Join the News24 Community to be involved in breaking the news.

Log in with Facebook to comment and personalise news, weather and listings.