Nuclear fusion a step closer

2012-01-26 07:29
Paris - The quest to create nuclear fusion may have come a step closer when scientists heated solid matter to two million degrees with the world's most powerful X-ray laser, a study reported.

A team of researchers working at the Slac National Accelerator Laboratory in California used the rapid-fire laser - a billion times brighter than any other man-made X-ray source - to flash-heat a miniscule piece of aluminium foil.

In so doing, they created a form of plasma known as "hot dense matter", reaching temperatures hotter than two million degrees Celsius.

The whole process lasted less than a trillionth of a second.

Gas-like plasma is often called the fourth state of matter after solids, liquids and gases. While uncommon on Earth, it makes up over 99% of the visible universe, including the interior of stars such as the sun.


"Making extremely hot, dense matter is important scientifically if we are ultimately to understand the conditions that exist inside stars and at the centre of giant planets within our own solar system," said lead author Sam Vinko, a researcher at the University of Oxford.

Scientists have long been able to create electrically-charged plasma by heating gases, which can ripe away electrons from their atoms.

But up to now, no tools existed for doing the same thing at solid densities that cannot be penetrated by conventional laser beams.

In the experiments, reported in the journal Nature, scientists used ultra-short wavelengths of X-ray laser light to blast the aluminium foil and create, for the first time, a uniform patch of plasma, a cube about one thousandth of a centimetre per side.

The results will be measured against theories and computer simulations as to how hot, dense matter behaves.

And it should help understand - and perhaps one day recreate - nuclear fusion, long heralded as a potentially unlimited and clean source of energy, the researchers said.

"Linac Coherent Light Source (LCLS) is really going to revolutionise the field, in my view," said co-author Justin Wark, also at Oxford, referring to the laser used in the experiment.

There are currently two main paths toward making fusion energy.

One uses large-scale magnetic fields, the approach adopted by the International Thermonuclear Experimental Reactor (ITER) in France, set to become operational in 2019.

The National Ignition Facility in the US (NIF), by contrast, is one of several experimental facilities to use very high-energy optical lasers to achieve the same end.
Read more on:    science

Join the conversation! encourages commentary submitted via MyNews24. Contributions of 200 words or more will be considered for publication.

We reserve editorial discretion to decide what will be published.
Read our comments policy for guidelines on contributions.

linking and moving

2015-04-22 07:36 publishes all comments posted on articles provided that they adhere to our Comments Policy. Should you wish to report a comment for editorial review, please do so by clicking the 'Report Comment' button to the right of each comment.

Comment on this story
Comments have been closed for this article.

Inside News24


Book flights

Compare, Book, Fly

Traffic Alerts
There are new stories on the homepage. Click here to see them.


Create Profile

Creating your profile will enable you to submit photos and stories to get published on News24.

Please provide a username for your profile page:

This username must be unique, cannot be edited and will be used in the URL to your profile page across the entire network.


Location Settings

News24 allows you to edit the display of certain components based on a location. If you wish to personalise the page based on your preferences, please select a location for each component and click "Submit" in order for the changes to take affect.

Facebook Sign-In

Hi News addict,

Join the News24 Community to be involved in breaking the news.

Log in with Facebook to comment and personalise news, weather and listings.