'Catastrophic failure': why shoelaces come undone

2017-04-12 14:13


Multimedia   ·   User Galleries   ·   News in Pictures Send us your pictures  ·  Send us your stories

Paris - A mystery as old as laced shoes was unravelled on Wednesday by experiments that reveal how shoestrings come undone when we are on the move.

"The failure of the knot happens in a matter of seconds, often without warning, and is catastrophic," scientists reported in the journal Proceedings of the Royal Society A.

The researchers meant "catastrophic" in a technical sense of complete, or total collapse - once the loosening begins, there's no stopping it.

But while the cost of a straggling shoelace is rarely higher than a scraped knee or the time it takes to bend down and retie a bow, sometimes the consequences can be devastating.

Lace-related accidents dot local media around the world: the van driver who killed a motorcyclist when his shoestring - wound tight around the accelerator - prevented him from lifting his foot off the gas; the boy whose leg got pulled into the gears of an escalator; the cyclist who went head-over-handlebars into traffic.

Millions of shoelaces surely come unfurled every day, and yet the mechanics of that process had never been thoroughly examined.

To tackle the enigma, a trio of mechanical engineers at the University of California at Berkeley filmed a knot - on the shoe of a researcher running on a treadmill - coming undone in extreme slow motion.

The images suggested a two-pronged attack on the knot's integrity.

A double whammy 

"When running, your foot strikes the ground at seven times the force of gravity," stretching and relaxing the knot, said co-author Christine Gregg, a graduate student.

And then - as the knot relaxes - the legs swings into motion, applying additional force.

"A double whammy of stomping and whipping forces acts like an invisible hand, loosening the knot and then tugging on the free ends of your laces until the whole thing unravels," the researchers explained in a statement.

Follow-up tests with a mechanical foot-and-leg showed that some laces were better than others, but none were impervious to failure.

Of the two most commonly used knots to tie shoes, one is "weak" and the other "strong", the study found.

The strong version is based on a square knot, which is more symmetrical, while the so-called "false" knot twists when tightened rather than lying flat.

Both fail in the same way, but one takes longer than the other.

"We were able to show that the weak knot will always fail and the strong knot will fail at a certain time scale," said professor Oliver O-Reilly, whose lab conducted the experiments.

"But we still do not understand why there's a fundamental mechanical difference," he added, leaving another knotty mystery to be solved.

Read more on:    uk  |  research

Join the conversation!

24.com encourages commentary submitted via MyNews24. Contributions of 200 words or more will be considered for publication.

We reserve editorial discretion to decide what will be published.
Read our comments policy for guidelines on contributions.

Inside News24

Traffic Alerts
There are new stories on the homepage. Click here to see them.


Create Profile

Creating your profile will enable you to submit photos and stories to get published on News24.

Please provide a username for your profile page:

This username must be unique, cannot be edited and will be used in the URL to your profile page across the entire 24.com network.


Location Settings

News24 allows you to edit the display of certain components based on a location. If you wish to personalise the page based on your preferences, please select a location for each component and click "Submit" in order for the changes to take affect.

Facebook Sign-In

Hi News addict,

Join the News24 Community to be involved in breaking the news.

Log in with Facebook to comment and personalise news, weather and listings.